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Abstract
Chronic kidney disease (CKD) remains a major public health concern, requiring better predictive models for early interven-
tion. This study evaluates a deep learning model (DLM) that utilizes raw chest X-ray (CXR) data to predict moderate to 
severe kidney function decline. We analyzed data from 79,219 patients with an estimated Glomerular Filtration Rate (eGFR) 
between 65 and 120, segmented into development (n = 37,983), tuning (n = 15,346), internal validation (n = 14,113), and 
external validation (n = 11,777) sets. Our DLM, pretrained on CXR-report pairs, was fine-tuned with the development set. We 
retrospectively examined data spanning April 2011 to February 2022, with a 5-year maximum follow-up. Primary and second-
ary endpoints included CKD stage 3b progression, ESRD/dialysis, and mortality. The overall concordance index (C-index) 
values for the internal and external validation sets were 0.903 (95% CI, 0.885–0.922) and 0.851 (95% CI, 0.819–0.883), 
respectively. In these sets, the incidences of progression to CKD stage 3b at 5 years were 19.2% and 13.4% in the high-risk 
group, significantly higher than those in the median-risk (5.9% and 5.1%) and low-risk groups (0.9% and 0.9%), respectively. 
The sex, age, and eGFR-adjusted hazard ratios (HR) for the high-risk group compared to the low-risk group were 16.88 (95% 
CI, 10.84–26.28) and 7.77 (95% CI, 4.77–12.64), respectively. The high-risk group also exhibited higher probabilities of 
progressing to ESRD/dialysis or experiencing mortality compared to the low-risk group. Further analysis revealed that the 
high-risk group compared to the low/median-risk group had a higher prevalence of complications and abnormal blood/urine 
markers. Our findings demonstrate that a DLM utilizing CXR can effectively predict CKD stage 3b progression, offering a 
potential tool for early intervention in high-risk populations.
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Introduction

The global prevalence of chronic kidney disease (CKD) is 
9.1%, and it is largely preventable and treatable, deserving 
increased attention in global health policy decision-making 
[1]. Once CKD progresses to an advanced stage, it inevita-
bly leads to various complications, drastically reducing the 
quality of life [2]. Despite the existence of effective meth-
ods to prevent progression [3, 4], awareness among patients 
and medical service providers remains low [5]. Currently, 
the management of CKD primarily relies on albuminuria 
tests and estimated Glomerular Filtration Rate (eGFR), 
calculated from serum creatinine levels [6]. Albuminuria 
testing plays a crucial role in diagnosing early-stage CKD; 
however, its scarcity has resulted in significant underdiag-
nosis [7]. In patients with hypertension or diabetes, stud-
ies estimate that approximately two-thirds of those with 
albuminuria remain undetected due to a lack of testing, 
highlighting a major gap in CKD detection [8]. Neverthe-
less, screening the entire population for albuminuria may 
not be cost-effective [9, 10]. Therefore, there is a consensus 
to focus screening efforts on high-risk groups [11].

Numerous studies have employed combined risk pre-
dictors and typically relied on multi-variable models to 
forecast CKD progression [12]. However, these studies 
consistently emphasize the significance of eGFR and albu-
minuria tests [13], which poses a challenge when albumi-
nuria tests are unavailable. Furthermore, additional blood 
and urine parameters played a pivotal role in powering 
these risk stratification calculators [12]. However, their 
frequent omissions in electronic health records (EHRs) 
often render these conventional clinical risk scores unus-
able [14]. In the absence of blood and urine informa-
tion, CKD’s most critical risk factors include a history of 
diabetes or cardiovascular diseases, and it has been rec-
ommended to systematically screen patients with these 
conditions [11]. However, these diseases also face under-
diagnosis issues [15], and relying solely on medical his-
tory for risk stratification lacks accuracy in the context of 
CKD. There is a need to develop new risk stratification 
tools for early CKD to address the challenges faced by 
traditional EHR-based aggregate models when applied on 
a large scale.

A highly promising screening approach, known as 
opportunistic screening, has recently gained significant 
attention and application [16]. Traditionally, this method 
is performed by radiologists, such as when they identify 
potential osteoporosis patients while interpreting chest 
radiographs (CXR) [17]. The advent of deep learning 
models has prompted considerations for integrating artifi-
cial intelligence (AI) into radiological daily practices for 
such screening [18]. A recent randomized controlled trial 

has also demonstrated that AI-enabled CXR (AI-CXR) for 
opportunistic screening of osteoporosis has the potential 
to address the problem of underdiagnosis [19]. AI-CXR 
can be used not only to interpret osteoporosis but also 
to identify risk factors for early-stage CKD from chest 
X-rays, such as diabetes [20] and risk of cardiovascular 
diseases [21]. Therefore, we hypothesize that AI-CXR 
has the potential to serve as a risk stratification method 
for CKD. Considering that over 2 billion CXR are per-
formed worldwide annually [22], an AI-CXR risk strati-
fication tool that does not require data integration has the 
potential to identify patients with high risk of early-stage 
CKD, prompting early diagnosis and intervention for these 
patients. This study aimed to develop an AI model to iden-
tify high-risk groups for early-stage CKD, thereby offer-
ing a future opportunity to address the underdiagnosis of 
early-stage CKD.

Methods

Data Source and Population

This study received ethical approval from the Institutional 
Review Board (IRB NO. C202305019) at Tri-Service 
General Hospital in Taipei, Taiwan. Given the retrospec-
tive nature of the study, which involved anonymized and 
encrypted data, individual patient consent was not required. 
Data were collected from two facilities within the Tri-Ser-
vice General Hospital system: an academic medical center 
in the Neihu District (Hospital A) and a community hospi-
tal in the Zhongzheng District (Hospital B), over a period 
spanning from April 2011 to February 2022. The research 
focused on patients who had estimated Glomerular filtration 
rate (eGFR) values recorded within 1 year prior to undergo-
ing a chest X-ray (CXR). Our study included individuals 
with eGFR 60–120 ml/min/1.73m2, spanning normal kid-
ney function to mild CKD, ensuring a broad range of early 
CKD risk levels. All had at least one postero-anterior (PA) 
CXR with radiological labels, demographics, disease his-
tory, and lab results. Patients younger than 20 years were 
excluded from the analysis. To prevent potential CKD treat-
ments from interfering with the model’s predictive accuracy, 
patients who have previously been treated with angiotensin-
converting enzyme inhibitors, angiotensin receptor blockers, 
pentoxifylline, dipyridamole, or sodium bicarbonate were 
excluded.

Our database comprised 79,219 patients for analysis, as 
shown in Fig. 1. Hospital A contributed 67,442 patients, 
each having undergone at least one CXR. To prevent overlap, 
each patient was assigned to only one dataset. Patients with 
multiple CXRs were allocated to the development set, while 
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those with a single CXR were placed in the tuning, inter-
nal validation, or external validation sets. From Hospital A, 
37,983 patients were included in the development set, con-
tributing 83,689 CXRs for training our deep learning model 
(DLM). Additionally, 15,346 patients were assigned to the 
tuning set, providing 34,010 CXRs for refining the model. 
The internal validation set consisted of 14,113 independ-
ent patients, using only their initial CXR for evaluation. To 
evaluate the generalizability of our DLM, we incorporated 
data from Hospital B, involving 11,777 patients selected 
using the same criteria as those for the internal validation 
set to maintain consistency. To avoid over-representation of 
sicker patients who undergo frequent CXR examinations, we 
randomly sampled a single CXR per patient for each data-
set. This method ensures a representation of diverse clinical 
scenarios, reflecting routine model deployment where CXRs 
are obtained at various stages of a patient's treatment course.

Patient Characteristics

Patient characteristics were extracted from the hospital 
information systems, with their pre-index medical histories 
identified through the International Classification of Dis-
eases (ICD) codes. The conditions assessed included dia-
betes mellitus (DM, ICD-9 codes 250.x and ICD-10 codes 
E11.x), hypertension (HTN, ICD-9 codes 401.x to 404.x 
and ICD-10 codes I10.x to I16.x), hyperlipidemia (HLP, 
ICD-9 codes 272.x and ICD-10 codes E78.x), chronic kid-
ney disease (CKD, ICD-9 codes 585.x and ICD-10 codes 
N18.x), heart failure (HF, ICD-9 codes 428.x, 398.91, and 
402. × 1, and ICD-10 codes I50.x), coronary artery disease 
(CAD, ICD-9 codes 410.x to 414.x, and 429.2, and ICD-10 

codes I20.x to I25.x), and chronic obstructive pulmonary 
disease (COPD, ICD-9 codes 490.x to 496.x and ICD-10 
codes J44.9).

In our database, each CXR report includes 45 radiological 
labels, which were systematically extracted using a struc-
tured natural language processing-assisted approach and 
subsequently annotated and verified by a team of board-cer-
tified radiologists to ensure consistency and accuracy. These 
labels encompass a range of findings such as consolidation 
change, pneumonia, emphysematous change, pneumothorax, 
atelectasis, scalloping of the diaphragm, costophrenic angle 
blunting, pleural effusion, atherosclerosis, cardiomegaly, 
prominence of hilar shadow, pulmonary edema, aneurysm, 
degenerative joint disease, fracture, spondylosis, osteophyte 
formation, osteoporosis, osteoarthritis, widening of the 
mediastinum, malignancy, inflammatory, pigtail or drain-
age, sternotomy, port implantation, perm catheter insertion, 
pacemaker, tracheostomy, vertebroplasty, endotracheal tube, 
and nasogastric tube. These features are crucial for explain-
ing the predictive basis of our AI-enhanced CXR analysis.

In addition to the eGFR, we collected key blood labora-
tory values from 1 year prior to the CXR, including blood 
urea nitrogen (BUN), urinary protein (uPro), microalbumin 
(mAlb), albumin-to-creatinine ratio (ACR), glucose (GLU), 
hemoglobin A1c (HbA1c), triglycerides (TG), total choles-
terol (TC), low-density lipoprotein (LDL), high-density lipo-
protein (HDL), and uric acid (UA).

Outcomes

In this study, the primary outcome was defined as having at 
least two eGFR values less than or equal to 45, indicative of 

Fig. 1   Creation of development, tuning, internal validation, and 
external validation sets. This figure depicts the methodology 
employed for constructing and analyzing datasets to guarantee their 
durability and trustworthiness in training, validating, and testing the 

network. Each patient’s data was segregated into distinct sets, ensur-
ing the isolation of information and avoiding any potential “cross-
contamination” between the training, validation, and test datasets
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CKD stage 3b. We also defined two secondary outcomes: 
(1) end-stage renal disease (ESRD) or initiation of dialysis 
and (2) all-cause mortality. To minimize bias from incom-
plete records, data on patient visits were censored at the 
last known hospital encounter when the patient was alive. 
Additionally, the initiation of treatment with angiotensin-
converting enzyme inhibitors, angiotensin receptor block-
ers, pentoxifylline, dipyridamole, or sodium bicarbonate 
was considered a censoring event to avoid interference from 
CKD treatment plans.

Implementation of the Deep Learning and Machine 
Learning Models

The CXR images in our study were stored in DICOM format 
with a resolution exceeding 2000 × 2000 pixels. Our primary 
feature extraction architecture was based on CheXzero [23], 
which integrates an image encoder and a language encoder 
pretrained on pairs of CXR images and associated radiologi-
cal reports. We utilized the image encoder component, spe-
cifically a vision transformer (ViT-B/32), to extract embed-
dings for each CXR in our dataset. Each image was resized 
to a resolution of 256 × 256 to align with the network struc-
ture, followed by image normalization to ensure consist-
ency across input images. The processed images were then 
encoded into a 512-dimensional feature vector. We applied 
the weight “best_64_0.0001_original_35000_0.864,” which 
was the best publicly available model checkpoint from the 
original CheXzero study [23], selected based on its perfor-
mance in prior evaluations. We used the pretrained model 
as a feature extractor without fine-tuning, as CheXzero has 
demonstrated strong generalization across multiple data-
sets. The extracted feature vectors were used to develop a 
Cox regression model to predict the development of CKD 
stage 3b, which we termed the CXR-risk score. The same 
model was also employed to predict progression to ESRD/
dialysis and all-cause mortality without re-fitting by the Cox 
regression model. Risk stratification into low-, medium-, 
and high-risk groups was performed post-training, based 
on model-derived risk scores. Thresholds were optimized 
using the Youden index and F-score from the tuning set, 
ensuring effective classification for CKD progression. These 
processes were conducted within a Python environment, spe-
cifically version 3.10.10, using the “torch” package version 
2.0.1.

We also conducted training using an XGBoost (eXtreme 
Gradient Boosting) classifier, employing the same datasets 
as those used in the DLM for predicting CKD stage 3b. 
This machine learning algorithm incorporated all available 
patient demographics and radiological labels. To ensure the 
model’s robustness, 45 radiological features were evalu-
ated based on correlation scores, and highly correlated fea-
tures were excluded to prevent redundancy and minimize 

the influence of overlapping pathological conditions. The 
final model included the top eight most important features, 
selected for optimal predictive performance. The training 
was executed using the xgboost package version 0.71.2 in 
R, with default prediction parameters. Additionally, we uti-
lized the XGBoost classifier to generate new predictions 
by integrating outputs from the DLM with patient char-
acteristics. These predictions were subsequently used to 
evaluate and compare the accuracy levels achieved by both 
methodologies.

Statistical Analysis

The characteristics of the different datasets are presented 
using descriptive statistics, including means, standard devia-
tions, patient counts, and percentages. Continuous variables 
were analyzed using either Student’s t-test or analysis of 
variance, and results are presented as mean ± SD. Categori-
cal variables were assessed using the χ2 test or Fisher’s 
exact test, depending on appropriateness. The performance 
of the deep learning model (DLM) was evaluated through 
Kaplan–Meier survival curves for predicting the develop-
ment of CKD stage 3b and other secondary outcomes, with 
the concordance index (C-index) calculated to assess model 
accuracy. The operational thresholds for median risk and 
high risk were set based on the incidence of CKD stage 3b 
within a 5-year period, utilizing the maximum Youden’s 
index and F-score from the tuning set. Statistical analyses 
were performed using R version 3.4.4. For multiple com-
parisons, Bonferroni correction was applied to adjust the 
significance threshold.

Results

Baseline Characteristics

The patient characteristics of the development, tuning, inter-
nal validation, and external validation sets are summarized 
in Table 1, with all variables showing differences across 
datasets. In the development set, the average eGFR was 
96.2 ± 13.6, which included 12,136 patients (32.0%) with 
eGFR below 90 ml/min, 15,751 patients (41.5%) with eGFR 
between 90 and 105 ml/min, and 10,096 patients (26.6%) 
with eGFR between 106 and 120 ml/min. In the internal 
validation set, the average eGFR was 96.4 ± 13.3, with 4391 
patients (31.1%) below 90 ml/min, 6030 patients (42.7%) 
between 90 and 105 ml/min, and 3692 patients (26.2%) 
between 106 and 120 ml/min. Similarly, in the external val-
idation set, the average eGFR was 95.6 ± 13.2, with 3927 
patients (33.3%) below 90 ml/min, 5067 patients (43.0%) 
between 90 and 105 ml/min, and 2783 patients (23.6%) 
between 106 and 120 ml/min. Additionally, Extended Data 
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Table 1 and Extended Data Table 2 describe the demo-
graphic and radiological disease distributions of patients 
stratified by CKD 3B status at the 5-year follow-up.

Prediction of Long‑Term Risk of Developing CKD 
Stage 3b, ESRD/Dialysis, and Mortality Events

Using the tuning set, patients were stratified into low, 
median, and high-risk groups based on cutoff points deter-
mined by maximum Youden’s index and F-scores. Figure 2 
illustrates the progression to CKD stage 3b, progression to 
ESRD/dialysis, and mortality rates across these risk cate-
gories. In the internal validation set, the incidences of pro-
gression to CKD stage 3b were 9.1% at 2 years and 19.2% 

at 5 years in the high-risk group, significantly higher than 
those in the median-risk group (1.4% at 2 years and 5.9% 
at 5 years) and low-risk group (0.1% at 2 years and 0.9% 
at 5 years). The sex, age, and eGFR-adjusted hazard ratio 
(HR) for this group was 16.88 (95% CI, 10.84–26.28). 
Similarly, the incidences of progression to ESRD/dialysis 
were 2.4% at 2 years and 4.7% at 5 years in the high-
risk group, significantly higher than in the median-risk 
group (0.4% at 2 years and 1.6% at 5 years) and low-risk 
group (0.0% at 2 years and 0.1% at 5 years), with a cor-
responding HR of 73.44 (95% CI, 23.62–228.36). Addi-
tionally, the incidences of all-cause mortality were 8.9% 
at 2 years and 15.2% at 5 years in the high-risk group, 
markedly higher than those in the median-risk group (2.5% 

Table 1   Baseline characteristics

ED emergency department, IPD inpatient department, OPD outpatient department, CR computed radiography, DX digital radiography, DM dia-
betes mellitus, HTN hypertension, HLP hyperlipidemia, HF heart failure, CAD coronary artery disease, COPD chronic obstructive pulmonary 
disease
†Adjusted significance level (α) = 0.00384, indicating statistical significance

Variable Development set (n = 
37,983)

Tuning set (n = 
15,346)

Internal validation set (n = 
14,113)

External validation set (n = 
11,777)

p value

eGFR 96.2 ± 13.6 96.2 ± 13.5 96.4 ± 13.3 95.6 ± 13.2  < 0.001†
eGFR group  < 0.001†
  < 90 ml/min 12,136 (32.0%) 4966 (32.4%) 4391 (31.1%) 3927 (33.3%)
  90–105 ml/min 15,751 (41.5%) 6335 (41.3%) 6030 (42.7%) 5067 (43.0%)
  106–120 ml/min 10,096 (26.6%) 4045 (26.4%) 3692 (26.2%) 2783 (23.6%)

Demographics
  Age 52.3 ± 15.6 52.3 ± 15.6 51.4 ± 15.1 52.6 ± 15.7  < 0.001†
  Age group  < 0.001†
   < 50 y/o 16,320 (43.0%) 6684 (43.6%) 6325 (44.8%) 4917 (41.8%)
   50–59 y/o 8936 (23.5%) 3573 (23.3%) 3451 (24.5%) 2684 (22.8%)
   60–69 y/o 8083 (21.3%) 3174 (20.7%) 2936 (20.8%) 2747 (23.3%)
   > 69 y/o 4644 (12.2%) 1915 (12.5%) 1401 (9.9%) 1429 (12.1%)

Gender  < 0.001†
  Female 19,183 (50.5%) 7779 (50.7%) 7407 (52.5%) 6389 (54.2%)
  Male 18,800 (49.5%) 7567 (49.3%) 6706 (47.5%) 5388 (45.8%)

Data source  < 0.001†
  ED 10,872 (28.6%) 4456 (29.0%) 4000 (28.3%) 2976 (25.3%)
  IPD 10,114 (26.6%) 4068 (26.5%) 3740 (26.5%) 2874 (24.4%)
  OPD 16,997 (44.7%) 6822 (44.5%) 6373 (45.2%) 5927 (50.3%)

Image technology  < 0.001†
  CR 8043 (21.2%) 3208 (20.9%) 2963 (21.0%) 1994 (16.9%)
  DX 29,940 (78.8%) 12,138 (79.1%) 11,150 (79.0%) 9783 (83.1%)

Disease histories
  DM 3121 (8.2%) 1270 (8.3%) 973 (6.9%) 1338 (11.4%)  < 0.001†
  HTN 584 (1.5%) 244 (1.6%) 160 (1.1%) 284 (2.4%)  < 0.001†
  HLP 6577 (17.3%) 2600 (16.9%) 2173 (15.4%) 3406 (28.9%)  < 0.001†
  HF 424 (1.1%) 185 (1.2%) 88 (0.6%) 124 (1.1%)  < 0.001†
  CAD 2925 (7.7%) 1208 (7.9%) 907 (6.4%) 1187 (10.1%)  < 0.001†
  COPD 3189 (8.4%) 1241 (8.1%) 788 (5.6%) 1355 (11.5%)  < 0.001†
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at 2 years and 4.9% at 5 years) and low-risk group (0.3% 
at 2 years and 0.7% at 5 years), with an HR of 22.53 (95% 
CI, 14.58–34.80). A clear dose–response relationship was 
evident, with HRs increasing from the low to the high-risk 
group. This relationship was also validated in the exter-
nal validation set, underscoring the significant prognostic 
value of AI-enhanced CXR in predicting future progres-
sion to CKD stage 3b, ESRD/dialysis, and mortality.

Components of AI‑CXR in Predicting CKD 3b 
Progression

To evaluate the efficacy of our DLM utilizing raw CXR 
data against traditional feature-based machine learning 
models (MLMs) for predicting future progression to CKD 
stage 3b, we conducted a comparative analysis. Based on 
the correlation matrix of 45 variables, highly correlated 

Table 2   Demographic characteristics in internal and external validation set

ED emergency department, IPD inpatient department, OPD outpatient department, CR computed radiography, DX digital radiography, DM dia-
betes mellitus, HTN hypertension, HLP hyperlipidemia, HF heart failure, CAD coronary artery disease, COPD chronic obstructive pulmonary 
disease
*Hypothesis test of the difference between the low risk, median risk, and high risk
†Adjusted significance level (α) = 0.00384, indicating statistical significance

Variable Internal validation External validation

Low risk (n 
= 11,653)

Median risk (n 
= 1372)

High risk (n 
= 1088)

p value* Low risk (n 
= 9851)

Median risk (n 
= 1090)

High risk (n 
= 836)

p value*

eGFR 98.0 ± 13.0 89.5 ± 12.1 88.0 ± 12.2  < 0.001† 97.2 ± 12.9 88.2 ± 11.7 86.3 ± 11.7  < 0.001†
eGFR group  < 0.001†  < 0.001†
  65–90 ml/min 3066 (26.3%) 693 (50.5%) 632 (58.1%) 2772 (28.1%) 619 (56.8%) 536 (64.1%)
  90–105 ml/

min
5111 (43.9%) 558 (40.7%) 361 (33.2%) 4420 (44.9%) 400 (36.7%) 247 (29.5%)

  106–120 ml/
min

3476 (29.8%) 121 (8.8%) 95 (8.7%) 2659 (27.0%) 71 (6.5%) 53 (6.3%)

Demographics
  Age 48.0 ± 13.5 64.2 ± 10.6 71.4 ± 11.4  < 0.001† 49.2 ± 14.1 66.4 ± 10.5 73.6 ± 11.9  < 0.001†
  Age group  < 0.001†  < 0.001†
    < 50 y/o 6163 (52.9%) 125 (9.1%) 37 (3.4%) 4810 (48.8%) 82 (7.5%) 25 (3.0%)
    50–59 y/o 2999 (25.7%) 302 (22.0%) 150 (13.8%) 2404 (24.4%) 191 (17.5%) 89 (10.6%)
    60–69 y/o 2061 (17.7%) 564 (41.1%) 311 (28.6%) 2126 (21.6%) 405 (37.2%) 216 (25.8%)
    > 69 y/o 430 (3.7%) 381 (27.8%) 590 (54.2%) 511 (5.2%) 412 (37.8%) 506 (60.5%)

Gender  < 0.001†  < 0.001†
  Female 6303 (54.1%) 592 (43.1%) 512 (47.1%) 5439 (55.2%) 556 (51.0%) 394 (47.1%)
  Male 5350 (45.9%) 780 (56.9%) 576 (52.9%) 4412 (44.8%) 534 (49.0%) 442 (52.9%)

Data source  < 0.001†  < 0.001†
  ED 3120 (26.8%) 508 (37.0%) 372 (34.2%) 2471 (25.1%) 280 (25.7%) 225 (26.9%)
  IPD 2804 (24.1%) 474 (34.5%) 462 (42.5%) 2207 (22.4%) 331 (30.4%) 336 (40.2%)
  OPD 5729 (49.2%) 390 (28.4%) 254 (23.3%) 5173 (52.5%) 479 (43.9%) 275 (32.9%)

Image technol-
ogy

 < 0.001† 0.028

  CR 2626 (22.5%) 185 (13.5%) 152 (14.0%) 1689 (17.1%) 154 (14.1%) 151 (18.1%)
  DX 9027 (77.5%) 1187 (86.5%) 936 (86.0%) 8162 (82.9%) 936 (85.9%) 685 (81.9%)

Disease histories
  DM 654 (5.6%) 169 (12.3%) 150 (13.8%)  < 0.001† 962 (9.8%) 224 (20.6%) 152 (18.2%)  < 0.001†
  HTN 128 (1.1%) 19 (1.4%) 13 (1.2%) 0.626 208 (2.1%) 47 (4.3%) 29 (3.5%)  < 0.001†
  HLP 1767 (15.2%) 242 (17.6%) 164 (15.1%) 0.053 2805 (28.5%) 389 (35.7%) 212 (25.4%)  < 0.001†
  HF 32 (0.3%) 16 (1.2%) 40 (3.7%)  < 0.001† 52 (0.5%) 30 (2.8%) 42 (5.0%)  < 0.001†
  CAD 666 (5.7%) 136 (9.9%) 105 (9.7%)  < 0.001† 889 (9.0%) 164 (15.0%) 134 (16.0%)  < 0.001†
  COPD 582 (5.0%) 97 (7.1%) 109 (10.0%)  < 0.001† 1022 (10.4%) 173 (15.9%) 160 (19.1%)  < 0.001†
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variables were selectively retained to avoid redundancy, 
as detailed in Extended Data Fig. 1. Figure 3A details 
the composition of these MLMs, emphasizing patient 
characteristics such as age and eGFR as critical factors. 
Notably, atherosclerosis was identified as the most sig-
nificant radiological characteristic in the models. Fig-
ure 3B presents the comparison of the concordance index 

(C-index) values derived from these parameters, MLMs, 
and the DLM. Extended Data Table 3 further presents a 
detailed performance comparison between the DLM and 
MLMs, highlighting key evaluation metrics. Remarkably, 
our DLM, which leverages raw CXR data, demonstrated 
superior performance compared to MLMs that rely on 
extracted radiological characteristics.
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Fig. 2   Long-term incidence of developing CKD stage 3b, ESRD/
dialysis, and mortality events stratified by AI-CXR. The analyses are 
performed on both internal and external validation sets. The table 

displays the population at risk and cumulative risk for specific time 
intervals in each risk stratification. It also includes the adjusted haz-
ard ratio (adjusted gender, age, and eGFR) for comparison



	 Journal of Imaging Informatics in Medicine

Risk Features of Patients with Different Risks 
Identified by AI‑CXR

In the internal validation set, the eGFR values for the high-
risk group averaged 88.0 ± 12.2, which was significantly 
lower than those for the median risk (89.5 ± 12.1) and low-
risk groups (98.0 ± 13.0). A clear dose–response relationship 
was evident, with eGFR decreasing progressively from the 
median/low-risk group to the high-risk group. Addition-
ally, compared to the median/low-risk group, the high-risk 
group exhibited significantly older age, a higher prevalence 

of male gender, more inpatient department visits, utilization 
of digital radiography, and higher incidence of comorbidi-
ties such as DM, HF, CAD, and COPD. These trends were 
similarly observed in the external validation set, as depicted 
in Table 2.

Furthermore, in terms of radiological findings, the high-
risk group demonstrated a significantly higher prevalence of 
radiological characteristics compared to the median/low-risk 
group, particularly for costophrenic angle blunting, pleural 
effusion, atherosclerosis, cardiomegaly, prominence of hilar 
shadow, and inflammatory, with similar trends noted in the 
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Fig. 3   A comparative analysisof AI-CXR and all available data. In 
A, we delineate the constituent components of conventional machine 
learning models utilized for this purpose. Specifically, we trained 
three xgboost models: one leveraging patient characteristics, another 
incorporating radiological characteristics, and the third amalgamat-
ing both datasets. Patient characteristics are depicted by the sky-blue 
bars, while radiological characteristics are represented by the orange 
bars. Transitioning to B, we present the C-index derived from all 
available eGFR-related data. This encompasses the performance of 

DLM-COX utilizing CXR data exclusively, as well as those integrat-
ing CXR data with patient characteristics. The sky-blue and orange 
bars denote the predictive outcomes based on individual patient char-
acteristics and radiological characteristics, respectively. The green 
bars illustrate predictions integrating features extracted through 
xgboost, while the brown bars demonstrate predictions incorporating 
insights from DLM-COX. Each C-index is accompanied by error bars 
denoting the 95% confidence intervals (CI) for clarity and precision in 
estimation
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external validation set, as outlined in Table 3. Regarding lab-
oratory examinations, the high-risk group exhibited signifi-
cantly elevated levels of BUN, GLU, and HbA1, along with a 
greater prevalence of ACR values ≥ 300 ug/mg. These trends 
were also observed in the external validation set, as detailed 
in Table 4.

Stratified Analysis of AI‑CXR in Predicting CKD 3b 
Progression

We evaluated our model’s performance across various 
subgroups, including CXR photography technique, data 

source, eGFR group, gender, age group, and comorbidities. 
The overall concordance indices (C-index) were 0.903 for 
the internal validation set and 0.851 for the external vali-
dation set. Notably, when assessing the impact of gender 
and age concurrently, we observed a decline in the C-index 
with increasing age. Specifically, among females under 
50 years old, the highest C-index of 0.960 was recorded 
in the internal validation set, whereas the highest C-index 
for males under 50 years old in the external validation set 
was 0.865. Additionally, patients without comorbidities 
consistently exhibited higher C-index values, as depicted 
in Fig. 4.

Table 3   Radiological characteristics in internal and external validation set

*Hypothesis test of the difference between the low risk, median risk, and high risk
#p value calculated with n < 25 in continuous variables or by Fisher’s exact test for categorical variables
†Adjusted significance level (α) = 0.00179, indicating statistical significance

Variable Internal validation External validation

Low risk (n 
= 11,653)

Median risk (n 
= 1372)

High risk (n 
= 1088)

p value* Low risk (n 
= 9851)

Median risk (n 
= 1090)

High risk (n 
= 836)

p value*

Consolidation 
change

61 (0.5%) 29 (2.1%) 80 (7.4%)  < 0.001† 59 (0.6%) 19 (1.7%) 53 (6.3%)  < 0.001†

Pneumonia 15 (0.1%) 9 (0.7%) 26 (2.4%)  < 0.001#† 10 (0.1%) 3 (0.3%) 10 (1.2%)  < 0.001#†
Emphysema-

tous change
46 (0.4%) 24 (1.7%) 35 (3.2%)  < 0.001† 50 (0.5%) 24 (2.2%) 26 (3.1%)  < 0.001†

Pneumothorax 9 (0.1%) 12 (0.9%) 17 (1.6%)  < 0.001#† 18 (0.2%) 4 (0.4%) 18 (2.2%)  < 0.001#†
Atelectasis 23 (0.2%) 19 (1.4%) 38 (3.5%)  < 0.001† 19 (0.2%) 18 (1.7%) 34 (4.1%)  < 0.001†
Scalloping of 

the dia-
phragm

140 (1.2%) 42 (3.1%) 39 (3.6%)  < 0.001† 119 (1.2%) 53 (4.9%) 38 (4.5%)  < 0.001†

Costophrenic 
angle blunt-
ing

1229 (10.5%) 421 (30.7%) 596 (54.8%)  < 0.001† 1158 (11.8%) 367 (33.7%) 487 (58.3%)  < 0.001†

Pleural effusion 365 (3.1%) 148 (10.8%) 307 (28.2%)  < 0.001† 359 (3.6%) 125 (11.5%) 213 (25.5%)  < 0.001†
Atherosclerosis 2472 (21.2%) 863 (62.9%) 834 (76.7%)  < 0.001† 2380 (24.2%) 771 (70.7%) 669 (80.0%)  < 0.001†
Cardiomegaly 532 (4.6%) 343 (25.0%) 437 (40.2%)  < 0.001† 425 (4.3%) 252 (23.1%) 343 (41.0%)  < 0.001†
Prominence of 

hilar shadow
267 (2.3%) 108 (7.9%) 187 (17.2%)  < 0.001† 178 (1.8%) 95 (8.7%) 151 (18.1%)  < 0.001†

Pulmonary 
edema

6 (0.1%) 8 (0.6%) 25 (2.3%)  < 0.001#† 4 (0.0%) 9 (0.8%) 17 (2.0%)  < 0.001#†

Aneurysm 1 (0.0%) 0 (0.0%) 2 (0.2%) 0.020# 0 (0.0%) 1 (0.1%) 0 (0.0%) 0.164#
Degenerative 

joint disease
2668 (22.9%) 812 (59.2%) 728 (66.9%)  < 0.001† 2461 (25.0%) 688 (63.1%) 598 (71.5%)  < 0.001†

Fracture 267 (2.3%) 111 (8.1%) 150 (13.8%)  < 0.001† 246 (2.5%) 101 (9.3%) 128 (15.3%)  < 0.001†
Spondylosis 1170 (10.0%) 437 (31.9%) 477 (43.8%)  < 0.001† 1090 (11.1%) 385 (35.3%) 383 (45.8%)  < 0.001†
Osteophyte 

formation
2072 (17.8%) 679 (49.5%) 628 (57.7%)  < 0.001† 1950 (19.8%) 560 (51.4%) 523 (62.6%)  < 0.001†

Osteoporosis 276 (2.4%) 138 (10.1%) 173 (15.9%)  < 0.001† 323 (3.3%) 128 (11.7%) 137 (16.4%)  < 0.001†
Osteoarthritis 764 (6.6%) 321 (23.4%) 360 (33.1%)  < 0.001† 696 (7.1%) 278 (25.5%) 287 (34.3%)  < 0.001†
Widening of 

the mediasti-
num

412 (3.5%) 160 (11.7%) 247 (22.7%)  < 0.001† 374 (3.8%) 131 (12.0%) 201 (24.0%)  < 0.001†

Malignancy 20 (0.2%) 16 (1.2%) 47 (4.3%)  < 0.001† 17 (0.2%) 9 (0.8%) 27 (3.2%)  < 0.001#†
Inflammatory 710 (6.1%) 252 (18.4%) 393 (36.1%)  < 0.001† 688 (7.0%) 216 (19.8%) 312 (37.3%)  < 0.001†
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Discussion

In this study, we developed and validated an AI model to 
predict the long-term risk of CKD progression risk using 
CXR. Our findings demonstrate that the AI model can strat-
ify patients effectively into low-, median-, and high-risk 

groups with significant predictive value for CKD stage 3b, 
ESRD/dialysis, and all-cause mortality, as evidenced by 
robust concordance indices in both internal and external 
validation sets. Importantly, our AI model utilizing CXR 
alone outperformed traditional feature-based machine 
learning models, highlighting the potential advantages of 

Table 4   Laboratory characteristics in internal and external validation set

BUN blood urea nitrogen, uPro urinary protein, mAlb microalbumin, ACR​ albumin-to-creatinine ratio, GLU glucose, HbA1c hemoglobin A1c
*Hypothesis test of the difference between the low risk, median risk, and high risk
#p value calculated with n < 25 in continuous variables or by Fisher’s exact test for categorical variables
†Adjusted significance level (α) = 0.00417, indicating statistical significance

Variable Internal validation External validation

Low risk (n 
= 11,653)

Median risk (n 
= 1372)

High risk (n 
= 1088)

p value* Low risk (n 
= 9851)

Median risk (n 
= 1090)

High risk (n 
= 836)

p value*

BUN 13.7 ± 4.0 15.8 ± 6.0 16.4 ± 6.4  < 0.001† 13.9 ± 4.1 15.5 ± 5.4 15.6 ± 5.9  < 0.001†
BUN group  < 0.001†  < 0.001†
  BUN ≤ 20 mg/dl 8315 (94.8%) 873 (84.3%) 739 (79.8%) 6489 (94.2%) 688 (87.3%) 571 (84.1%)
  BUN > 20 mg/dl 456 (5.2%) 162 (15.7%) 187 (20.2%) 400 (5.8%) 100 (12.7%) 108 (15.9%)
  uPro 43.9 ± 178.6 22.5 ± 26.6 51.5 ± 184.6 0.656 19.7 ± 57.3 45.6 ± 145.0 36.3 ± 62.2 0.045

uPro group 0.525# 0.154#
  uPro < 150 mg/

dl
229 (95.8%) 44 (100.0%) 73 (96.1%) 288 (97.3%) 36 (94.7%) 52 (92.9%)

  uPro ≥ 150 mg/
dl

10 (4.2%) 0 (0.0%) 3 (3.9%) 8 (2.7%) 2 (5.3%) 4 (7.1%)

  mAlb 8.8 ± 59.0 6.0 ± 15.2 13.4 ± 29.9 0.786 7.0 ± 52.6 5.7 ± 11.5 4.3 ± 7.5 0.908
mAlb group 0.053# 0.327#
  mAlb < 30 mg/dl 324 (96.4%) 66 (94.3%) 32 (86.5%) 492 (97.2%) 96 (94.1%) 49 (98.0%)
  mAlb 

30–299 mg/dl
10 (3.0%) 4 (5.7%) 5 (13.5%) 12 (2.4%) 6 (5.9%) 1 (2.0%)

  mAlb ≥ 300 mg/
dl

2 (0.6%) 0 (0.0%) 0 (0.0%) 2 (0.4%) 0 (0.0%) 0 (0.0%)

  ACR​ 80.8 ± 476.7 46.5 ± 94.5 221.1 ± 379.7 0.160 69.1 ± 433.4 37.2 ± 62.2 52.9 ± 99.0 0.804
ACR group  < 0.001#†  < 0.001#†
  ACR < 30 ug/mg 207 (79.6%) 45 (78.9%) 15 (46.9%) 326 (85.1%) 47 (67.1%) 25 (67.6%)
  ACR 30–299 

ug/mg
44 (16.9%) 9 (15.8%) 10 (31.2%) 45 (11.7%) 22 (31.4%) 10 (27.0%)

  ACR ≥ 300 ug/
mg

9 (3.5%) 3 (5.3%) 7 (21.9%) 12 (3.1%) 1 (1.4%) 2 (5.4%)

  GLU 98.9 ± 24.9 114.1 ± 38.4 118.5 ± 49.1  < 0.001† 102.3 ± 28.5 115.5 ± 35.5 110.3 ± 33.8  < 0.001†
GLU group  < 0.001†  < 0.001†
  GLU < 100 mg/

dl
3831 (70.8%) 194 (42.2%) 125 (42.8%) 3010 (62.7%) 193 (35.9%) 143 (45.0%)

  GLU 100–
125 mg/dl

1226 (22.6%) 169 (36.7%) 90 (30.8%) 1344 (28.0%) 223 (41.4%) 121 (38.1%)

  GLU ≥ 126 mg/
dl

357 (6.6%) 97 (21.1%) 77 (26.4%) 449 (9.3%) 122 (22.7%) 54 (17.0%)

  HbA1c 6.3 ± 1.6 6.9 ± 2.0 6.8 ± 1.7  < 0.001† 6.3 ± 1.6 6.8 ± 1.7 6.4 ± 1.1  < 0.001†
HbA1c group  < 0.001†  < 0.001†
  HbA1c < 6.5% 1178 (75.7%) 189 (59.1%) 143 (55.6%) 1368 (72.8%) 184 (55.8%) 145 (62.8%)
  HbA1c 

6.5–7.9%
228 (14.7%) 70 (21.9%) 72 (28.0%) 335 (17.8%) 88 (26.7%) 64 (27.7%)

  HbA1c ≥ 8.0% 150 (9.6%) 61 (19.1%) 42 (16.3%) 175 (9.3%) 58 (17.6%) 22 (9.5%)
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an AI-driven approach in leveraging complex imaging data 
for clinical prediction. These results suggest that AI-CXR 
may offer a valuable, cost-effective method for proactive 
CKD management.

Our study demonstrates that a single CXR can accurately 
predict CKD progression and even mortality, with consist-
ent results across stratified analyses. It is reasonable that 
CXRs could reveal these risks, as many AI-CXR models 

Fig. 4   Stratified analysis of selected patient characteristics to assess 
the performance of AI-CXR in predicting progress to CKD stage 3b. 
Bar charts with error bars representing the C-index and 95% confi-
dence intervals (CI) depict the performance metrics. The analysis is 
categorized by several factors, including image technology (repre-
sented by forest green and ocean blue for computed radiography and 
digital radiography), data source (color-coded as light green, yellow–
brown, and light orange for emergency department, inpatient depart-
ment, and outpatient department), eGFR group (color-coded as light 

green, yellow–brown, and light orange for eGFR < 90 ml/min, eGFR 
90–105 ml/min, and eGFR 106–120 ml/min), sex (highlighted in red 
and blue for female and male), and age (illustrated with shades of 
purple from dark to light to represent younger to older age groups), as 
well as comorbidities such as DM, HTN, HLP, CAD, HF, and COPD 
(indicated by forest green and ocean blue for without and with comor-
bidity). The performance results are presented for both the internal 
test set and the community test set, respectively
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have already shown superior capabilities to human inter-
pretation in identifying complex patterns linked to systemic 
disease. For example, AI-CXR models have outperformed 
clinicians in detecting osteoporosis [18], classifying cardiac 
functions [24], and predicting future major adverse cardio-
vascular events [21]—underscoring the untapped potential 
of radiographic data in forecasting health outcomes. Prior 
studies have also demonstrated the ability of CXRs to pre-
dict mortality [25, 26], supporting the idea that this imag-
ing modality can provide valuable prognostic information 
beyond its immediate clinical purpose. However, there are 
limited prior research on the use of CXRs to predict CKD 
specifically, though studies employing AI-enabled electro-
cardiogram for CKD prediction underscore the viability of 
imaging-based approaches for renal risk stratification [27]. 
Given this context, our model’s performance supports its 
reliability and potential utility as a novel tool for early CKD 
risk identification, meriting further exploration in clinical 
practice.

The predictive capabilities of AI-CXR in assessing CKD 
progression are strongly associated with traditional CKD 
risk factors. In our study, the incidence of comorbidities 
and albuminuria was notably higher in the high-risk group 
identified by AI-CXR compared to the median- and low-
risk groups, with a clear dose–response relationship evident 
across these categories. The ability of CXRs to reflect condi-
tions such as DM [20] and cardiac disease [24] is reasonable, 
as AI has previously shown efficacy in detecting systemic 
diseases and underlying conditions from radiographic fea-
tures. This correlation between CXR findings and CKD 
progression is likely driven by shared pathophysiological 
pathways. Vascular calcifications and atherosclerosis, detect-
able on CXR, are established risk factors for renal decline 
[28]. The higher prevalence of cardiomegaly and pulmonary 
congestion in the high-risk group suggests volume overload 
and cardiovascular complications, both contributing to CKD 
progression. This aligns with the increased occurrence of 
key radiological markers, including costophrenic angle 
blunting, pleural effusion, atherosclerosis, cardiomegaly, 
prominence of hilar shadow, and inflammatory changes, in 
AI-CXR-identified high-risk patients. These radiological 
markers are closely linked to comorbid conditions like DM 
and cardiac disease, which are known contributors to CKD 
progression [11]. Therefore, it is logical that our model not 
only predicts CKD risk but also stratifies patients based on 
these established factors. This integrated risk assessment 
further validates the utility of our AI-CXR model, highlight-
ing its potential as a comprehensive tool for early CKD risk 
stratification within standard imaging workflows.

Our findings indicate that the predictive performance of 
AI-CXR surpasses that of traditional risk factors combined, 
potentially revealing subtle features that may be challenging 
for human observers to detect. This phenomenon has been 

noted in other AI-CXR studies [29–31], where AI models 
have identified markers invisible to the human eye, suggest-
ing an ability to detect early signs of systemic disease that 
might otherwise be overlooked. Currently, the international 
CKD staging criteria incorporate albuminuria because it 
serves as a significant predictor of CKD progression and 
associated adverse outcomes [32]. Elevated levels of albu-
min in the urine indicate kidney damage and are linked to 
faster declines in kidney function, increased cardiovascular 
events, and higher mortality rates [33]. Given the scarcity 
of albuminuria testing [7]—illustrated by the fact that less 
than 10% of patients in our sample had records of urinary 
protein, microalbumin, or albumin-to-creatinine ratio in the 
EHR—AI-CXR could potentially serve as an alternative to 
albuminuria for identifying early CKD. The consistency and 
robustness of our results lead us to have strong confidence in 
the potential of AI-CXR as a transformative tool in the early 
identification and management of CKD.

This study has several limitations. First, as a retrospec-
tive analysis, the model’s performance is constrained by the 
quality and completeness of the available data. For example, 
our dataset lacked comprehensive albuminuria data, limit-
ing the ability to directly compare the model’s predictive 
power against established CKD biomarkers. Although the 
DLM using a single CXR outperformed models with addi-
tional clinical variables, this finding may be study-specific 
and requires validation in broader cohorts. While the model 
performed well in internal and external validation, its appli-
cability to diverse populations remains uncertain due to the 
homogeneous study cohort from two hospitals in Taiwan. 
Future studies using open datasets across different regions 
are needed to assess generalizability. Further evidence is 
required to confirm the reproducibility and clinical utility of 
single CXR-based predictions. Finally, while our AI-CXR 
model successfully utilized imaging data for risk stratifica-
tion, it lacks insight into causal mechanisms since the “black 
box” nature [34].

In conclusion, this study demonstrates that an AI-CXR 
model can effectively predict long-term CKD progression 
and associated adverse outcomes, providing a promising 
tool for risk stratification in clinical practice. The model can 
identify high-risk patients using CXR, offering a practical 
and accessible approach to early CKD management, espe-
cially in settings where traditional biomarkers like albumi-
nuria may be unavailable. Importantly, individuals identified 
as high-risk should undergo further routine diagnostic evalu-
ation to confirm CKD status and guide appropriate clinical 
management. By leveraging widely conducted imaging, the 
AI-CXR model could facilitate proactive CKD interven-
tion, improving patient outcomes and contributing to more 
efficient resource allocation in healthcare. Further prospec-
tive validation will be essential to confirm its utility across 
diverse clinical environments.
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